The Business Case for Conservation

A Summary of Farm Financial and Environmental Data from Precision Conservation Management

Precision Conservation Management

CHECKOFF & MEMBERSHIP PROGRAMS

ILLINOIS Agricultural & Consumer Economics COLLEGE OF AGRICULTURAL, CONSUMER & ENVIRONMENTAL SCIENCES

Gary Schnitkey

Laura Gentry

Sarah Sellars

NEW REPORT INSIDE!

2015-2020 Data Summary

The Business Case The Business Case Tor Conservation Practices Cost Benefit Analysis of Conservation Practices

Precision Conservation

hois Corn

Conservation practices analyzed for their ROI

A program of the

Illinois Corn Growers Association

- What is PCM?
- Data Collection
- Calculating economic returns
- Tillage results
- Nitrogen results
- Cover crop results
- Summary

LLINOIS

ILLINOIS Agricultural & Consumer Economics college of agricultural, consumer & environmental sciences

Speakers

Laura Gentry

Director of Water Quality

Gary Schnitkey

Professor of Farm Management ILLINOIS

Agricultural & Consumer Economics college of agricultural, consumer & environmental sciences Sarah Sellars Graduate student

Agricultural & Consumer Economics

COLLEGE OF AGRICULTURAL, CONSUMER & ENVIRONMENTAL SCIENCES

What is PCM?

farmdoc

I ILLINOIS

PRECISION CONSERVATION MANAGEMENT

- Understand how conservation practices impact farm net returns
- Address water quality concerns. Prevent agricultural regulation.
- Position farmers to benefit from positive conservation outcomes

farmdoc

I ILLINOIS

- 1-on-1 technical support - Data collection platform - Individualized yearly RAAP report - Economic cost tables - Environmental assessments - Local practice comparisons - \$750 participation payment - Exclusive program offers - cost share, other practice assistance - Networking & edn opportunities Justin Durdan, 4th generation farmer, Utica, IL

PRECISION CONSERVATION MANAGEMENT

- Understand how conservation practices impact farm net returns
 - Address water quality concerns. Prevent agricultural regulation.
 - Position farmers to benefit from positive conservation outcomes

I ILLINOIS

- 300 IL farmers, 300k acres
- Receive >\$18M in Federal, corporate, & private funding via grants & partnerships
- PepsiCo Carbon Footprint project w/ ADM, Bunge, & Cargill
- ESMC pilot program
- NRCS CIG award w/ SHP
- Received 3 NRCS RCPP awards
- NRCS project spotlight, 2019
- Field to Market 2020 Collaboration of the Year Award
- NCGA Sustainability Action Team recognition 2020

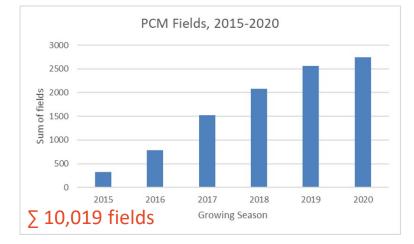
PRECISION CONSERVATION MANAGEMENT

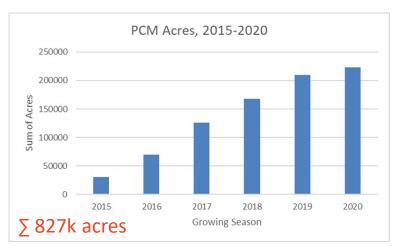
Justin Durdan, 4th generation farmer, Utica, IL

- Understand how conservation practices impact farm net returns
- Address water quality concerns. Prevent agricultural regulation.
- Position farmers to benefit from positive conservation outcomes

IILLINOIS

Illinois Nutrient Loss Reduction Strategy


Goal: 45% Reduction in **Total N & Total P** Losses by **2035 Interim:** 15% Reduction in NO₃-N & 25% Reduction in Total P by 2025


I ILLINOIS

LLINOIS

Precision Conservation Management

6 years of data

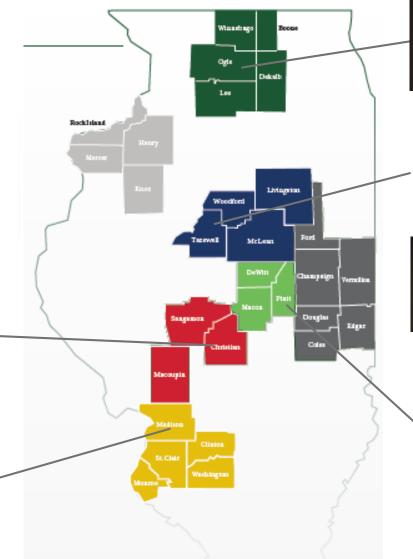
16 IL counties

10 KY counties

Growing in 2021

PCM GROWER ENGAGEMENT

Clay Bess PCM Operations Manager cbess@precisionconservation.org 309-445-0278


Shane Sinclair

PCM Specialist, Christian, Macoupin and Sangamon Counties ssinclair@precisionconservation.org 309-445-5017

Andrea Kohring

PCM Specialist, Monroe, St. Clair, Madison, Clinton & Washington Counties akohring@precisionconservation.org 309 319-8809

Alexa Rutherford

PCM Specialist, Ogle, Lee, DeKalb, Boone & Winnebago Counties arutherford@precisionconservation.org 309-336-9779

🗖 Kiela Martin

PCM Specialist, PCM Specialist, Livingston, McLean, Tazewell & Woodford Counties kmartin@precisionconservation.org 309-445-2418

Aidan Walton PCM Specialist, Champaign,

PCM Specialist, Champaign, Douglas, Edgar, Ford, Vermilion Counties awalton@precisionconservation.org

Luke Rund PCM Specialist, Piatt, DeWitt & Macon Counties Irund@precisionconservation.org 309-336-0765

Chris Stewart PCM Specialist, Select Counties in Kentucky cstewart@precisionconservation.org 270-205-2258

farmdoc

IILLINOIS

CHECK US OUT ONLINE: WWW.PRECISIONCONSERVATION.ORG

PCM Impact, 2020 Management Practices

85% use reduced tillage

ILINC

63% apply the majority of N application in-season for corn

35% grow an overwintering cover crop

PCM Impact, 2020 Environmental Outcomes

615,000 lb NO₃-N loss reductions

90,000 lb P loss reductions

127,000 tons sediment loss reductions

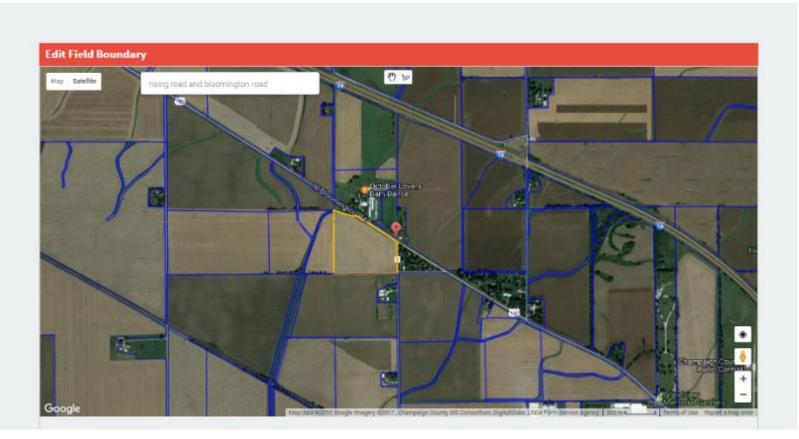
PCM Impact, 2020 Conservation Acres

141,000 reduced tillage acres

62,000 acres of in-season N fertilizer application, corn

25,000 cover crop acres

PCM Data Collection & Reports


mmm

Data Collection

- 1. Fields
- 2. Crops
- 3. Systems
 - Conventional
 - Non-GMO
 - Seed Corn/Bean
 - Organic/Transitioning
- 4. Programs
 - Every Pass Across Field
 - Inputs; Rates

🖷 Home 💷 News 🛛 Fields Agronomics - 🖻 Reports 👹 Users 😅 Switch - 🔼 Glen Salo -

IILLINOIS

PCM Practice Standards

1. Tillage

2. Cover Crops

3. Nutrient Management

Calculating Economic Returns

farmdoc

ILLINOIS

Field Passes (Soybeans to Corn)

Cover Crop

- 1. Plant cover crop seed
- 2. Apply DAP
- 3. Spray per-plant with N
- 4. Plant
- 5. Spray
- 6. Post-plant apply nitrogen
- 7. Harvest

Conventional

- 1. Apply DAP
- 2. Perform primary tillage
- 3. Apply anhydrous ammonia as fall N
- 4. Spring tillage
- 5. Plant
- 6. Spray
- 7. Apply fungicide
- 8. Harvest

I ILLINOIS

Number of fields	928	952
	Corn	Soybeans
		1000
SPR	134	134
Nitrogen applied total	210	2
in DAP/MAP	21	1
in Anhydrous Ammonia	93	0
in UAN	65	0
Revenue		
Yield per acre	205	65
Crop Revenue	714	613
ARC/PLC or ACRE	22	22
Crop Insurance		
Other Farm Receipts		
Gross Revenue	735	635
Expenses		
P, K and Lime	75	8
Nitrogen	62	0
Pesticides	46	40
Insecticides	1	1
Seed	121	57
Seed - cover crop	0	0
Drying	7	0
Storage	21	6
Crop Insurance	22	15
Direct Costs	354	128
Field work	15	14
Planting - crop	14	14
Planting - cover crop	0	1
Machine hire/lease/application cost	34	21
Harvest	36	32
Power Costs	101	81
Overhead Costs	36	30
Total Non-Land Costs	491	240
Operator and Land Return	244	395

Economic Report

- Revenue and Cost calculations
 - Gross revenue, inputs and power costs are assigned according to standard commodity prices, input costs and field operation costs
 - Based on annual reports from IL FBFM and USDA-ERS

tarmdoc

- Direct costs reflect the farmer's rate and source for inputs
- Power costs reflect the farmer's tillage practices
- Summaries are prepared based on aggregated values, by standard

Operator and land returns

Crop revenue (Yield times the same price per year)

- Direct costs (fertilizer, seed, chemicals)
- Power costs (each pass has a cost)
- Overhead costs (same for each farm)

Operator and land return

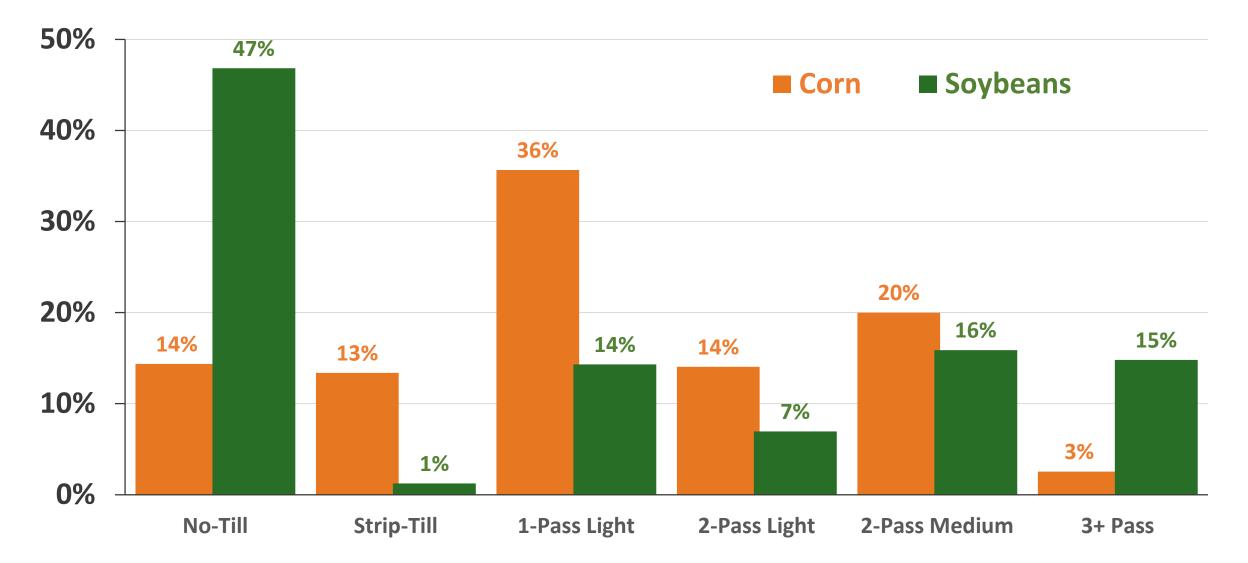
1,000

Tillage Cost Comparisons

Practice Comparisons Profitability Analyses

Q1

Q2

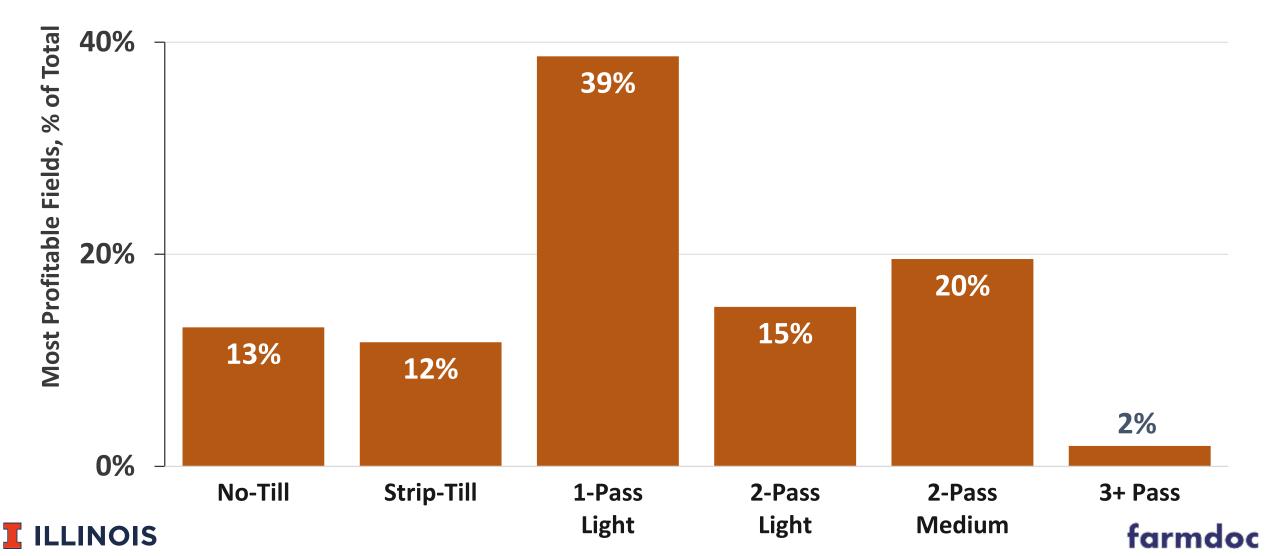

Q3

Tillage standards

- No-Till
- Strip-Till
- 1-pass
- 2-pass, light
- 2-pass, moderate
- 3+ pass

Tillage Benchmarks, 2015-2020

I ILLINOIS


tarmdoc

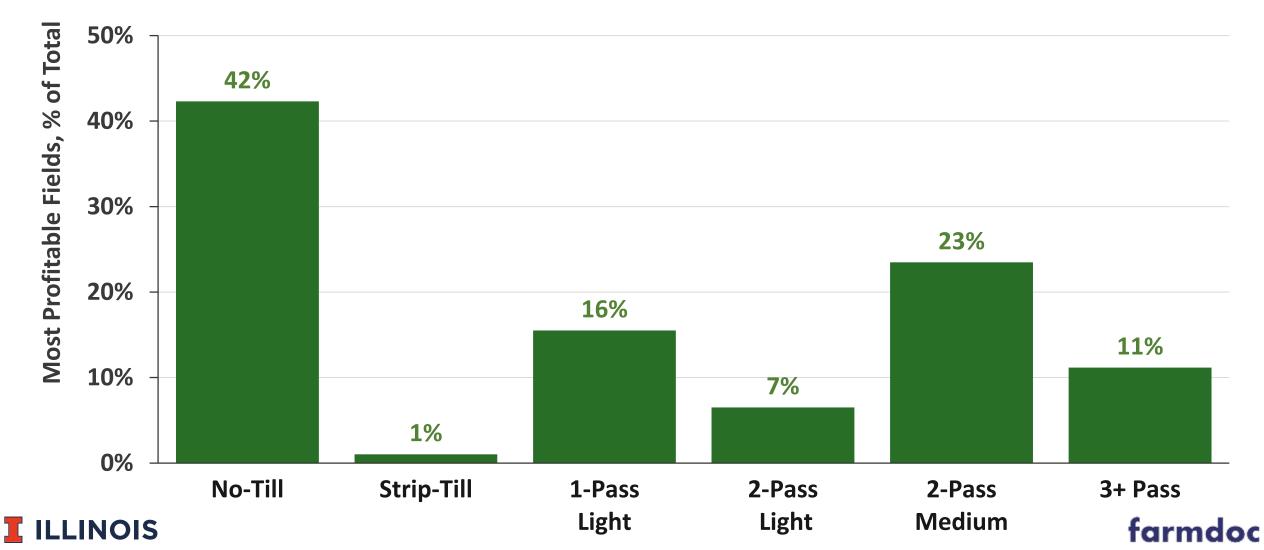
Corn

IILLINOIS

Tillage & Profitability: Corn Top 25% Most Profitable for 2015-2020

Average Return, Yield, and Cost, High SPR, 2015-2020

	% of Fields	Operator and Land Return	Yield	Direct Cost	Power Cost	Total Non- Land Cost
No-Till	13%	272	213	384	97	519
Strip-Till	15%	256	219	401	112	550
1-Pass Light	37%	279	218	387	106	530
2-Pass Light	13%	276	224	391	116	545
2-Pass Medium	20%	261	222	391	122	550
3+ Pass	2%	247	230	414	136	588


IILLINOIS

Soybeans

farmdo

ILLINOIS

Tillage & Profitability: Soybean Top 25% Most Profitable for 2015-2020

Average Return, Yield, and Cost, High SPR, 2015-2020

	% of Fields	Operator and Land Return	Yield	Direct Cost	Power Cost	Total Non- Land Cost
No-Till	45%	356	67	149	74	254
1-Pass Light	15%	362	68	143	84	258
2-Pass Light	5%	364	68	135	89	255
2-Pass Medium	19%	379	73	150	97	277
3+ Pass	14%	345	68	132	110	273

IILLINOIS

Summary

- Three or more pass systems are consistently **less profitable**
- Of the 25% more profitable, we see them in all systems
- Higher yields are important in all tillage benchmarks

N Management Cost Comparisons

N Timing Comparisons N Rate Comparisons

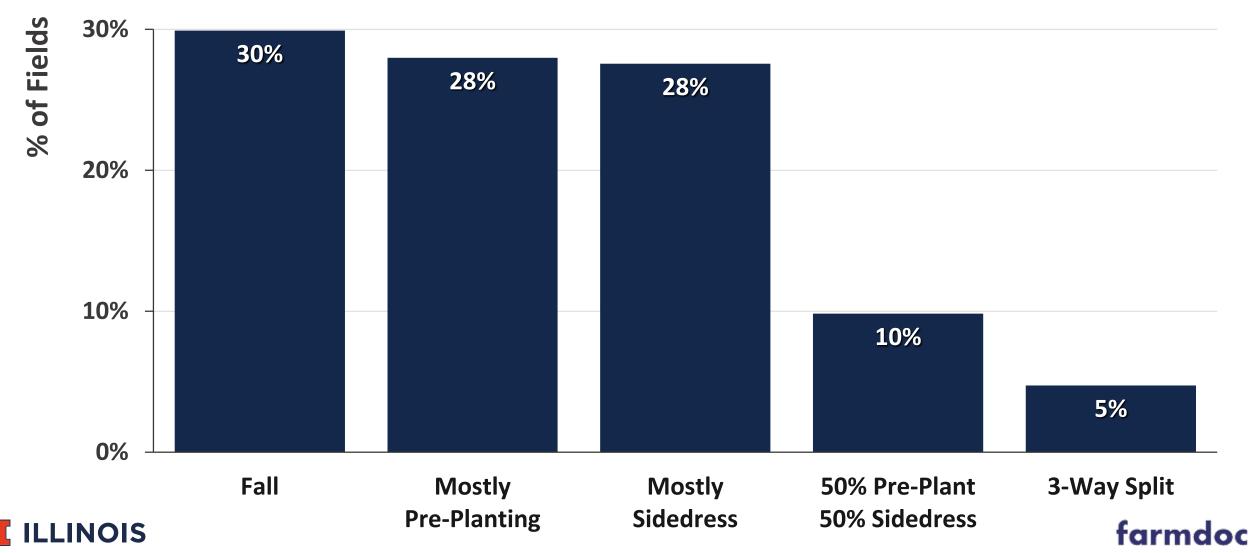
Q1

Q2

Q3

farmdoc

1,000


Nitrogen standards

- Fall >40% of total nitrogen is applied in fall
- Mostly pre-plant majority of nitrogen is applied in spring before planting or at planting
- Mostly sidedress majority of nitrogen is applied after planting
- 50% pre-plant / 50% sidedress Split application
- 3-way split split application with three passes (<40% fall-applied)

Nitrogen values are total pounds of actual N, including that in dry fertilizer (DAP, MAP)

IILLINOIS

Percent of Fields in Nitrogen Benchmarks, 2015-2020

Average Return, Yield, and Cost, High SPR, 2015-2020

	% of Fields	Operator and Land Return	Yield	N Rate Ib/acre	Direct Cost	Power Cost	Total Non- Land Cost
Fall	35%	258	220	212	400	113	550
Mostly Pre-Planting	24%	287	218	203	376	107	521
Mostly Sidedress	26%	276	220	201	388	112	537
50% Pre-Plant 50% Sidedress	10%	259	218	198	389	111	537
3-Way Split	5%	246	221	215	428	114	579

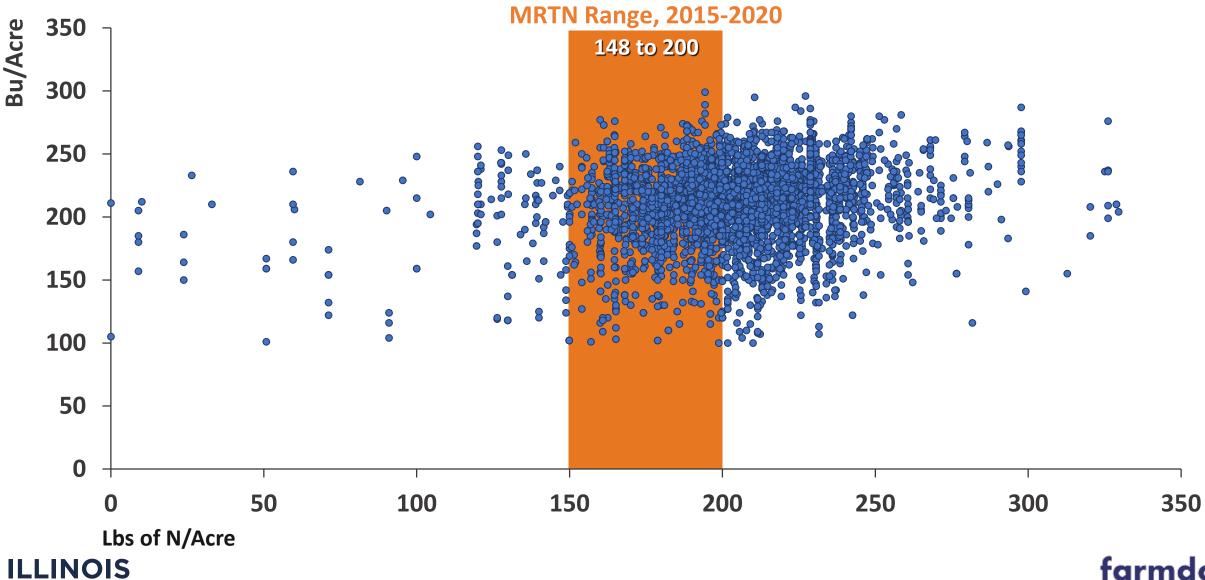
IILLINOIS

Average Nitrogen Cost, High SPR, 2015-2020

	2015 to 2020 \$/acre	2015 \$/acre	2016 \$/acre	2017 \$/acre	2018 \$/acre	2019 \$/acre	2020 \$/acre
Fall	79	96	86	74	72	85	82
Mostly Pre-Planting	78	89	80	70	70	81	86
Mostly Sidedress	75	91	71	69	69	77	81
50% Pre-Plant 50% Sidedress	80	102	79	75	72	82	88
3-Way Split	91	111	91	87	79	110	90

IILLINOIS

2021 MRTN Recommendation (in pounds of N applied)^{1,2}


This web site provides a process to calculate economic return to N application with different nitrogen and corn prices and to find profitable N rates directly from recent N rate research data. The method used follows a regional approach for determining corn N rate guidelines that is implemented in several Corn Belt states.

	Corn-Followi	ng-Soybeans	Corn-Following-Corn		
	Anhydrous Ammonia Ibs/acre	28% Nitrogen Solution Ibs/acre	Anhydrous Ammonia Ibs/acre	28% Nitrogen Solution Ibs/acre	
North	178	159	213	194	
Central	187	172	202	190	
South	206	191	206	186	

¹Taken from Corn Nitrogen Rate Calculator (<u>http://cnrc.agron.iastate.edu/nRate.aspx</u>) on June 22, 2021

-LINOIS ²MRTNs determined with a \$5.00 corn price, \$700 per ton anhydrous ammonia price, and \$360 per ton nitrogen solution price, **farmdoc**

Nitrogen Application and Yield, 2015-2020

Yield and Returns by MRTN Nitrogen Categories

	Yield	Returns
Category	bu/acre	\$/acre
Below MRTN	-16*	-16
MRTN		
Above 1	-1	-20*
Above 2	6*	-21*
Above 3	7*	-31*
Above 4	18*	-31*

I ILLINOIS

*Indicates significant different at 5% levels from MRTN category after controlling for soil productivity

Summary

1. For the PCM fields, 70% receive a nitrogen application greater than the MRTN profitable range

2. MRTN most profitable nitrogen application rates

3. On average, mostly pre-planting and mostly sidedress had the highest operator and land return

4. Mostly pre-planting and mostly sidedress also had the lowest nitrogen costs

Cover Crops: Lessons for New Adopters

Need to "experiment" with cover crops

Cover Crop Standards

- Overwintering
- Winter Terminal
- •None

Cover Crop Benchmarks (2016 to 2020)

		Soybeans			Corn	
Cover crop	Yield Bu/Acre	Non-land Costs \$/Acre	Return \$/Acre	Yield Bu/Acre	Non-land Costs \$/Acre	Return \$/Acre
Overwintering	68	\$269	\$344	214	\$545	\$232
Winter Terminal	67	\$254	\$371	218	\$532	\$263
No cover crop	69	\$258	\$388	220	\$540	\$261
Count	372 overwintering 21 winter terminal 4,546 no cover crop fields		150 overwintering 65 winter terminal 2,815 no cover crop fields			

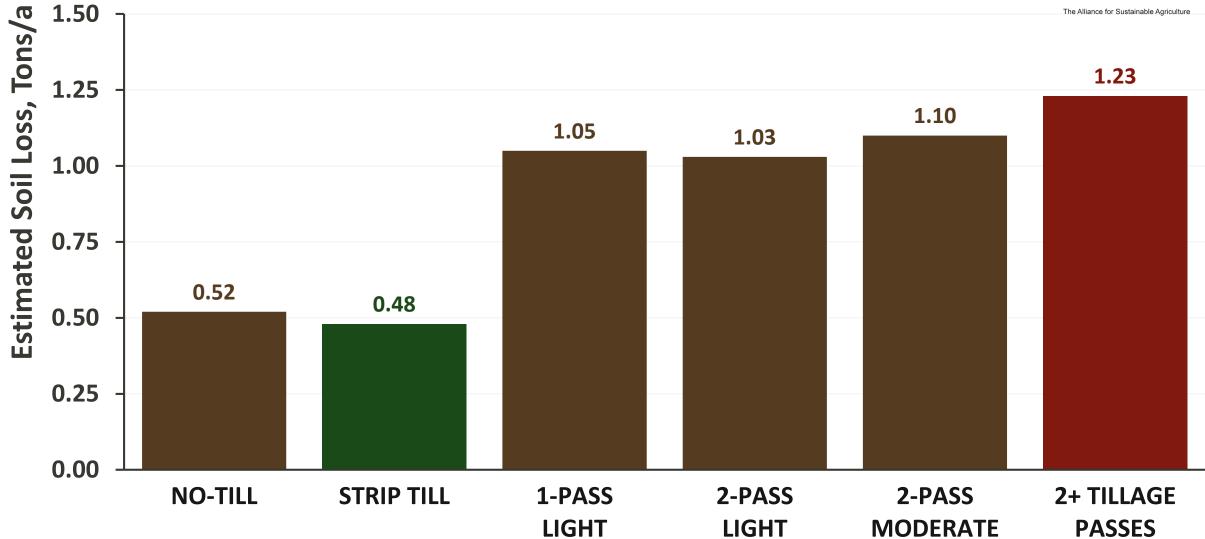
IILLINOIS

Cover Crop on Soybeans, 2016 – 2020, High SPR Fields, All fields and no-till

	A		
	None	Over-wintering	diff
No of fields	2546	372	
Yield	69	68	
Gross Revenue	\$628	\$619	-\$9
Direct non-cover costs ¹	141	139	-2
Power non-cover costs	86	72	-14
Overhead	30	30	0
Cover crop costs ²		28	28
Total Non-land costs	\$258	\$269	\$11
Operator and land returns	\$370	\$350	-\$2

1 Seed, pesticides, fertilizer, drying, storage, crop insurnace.

2 Cover crop seed, planting, and termination costs

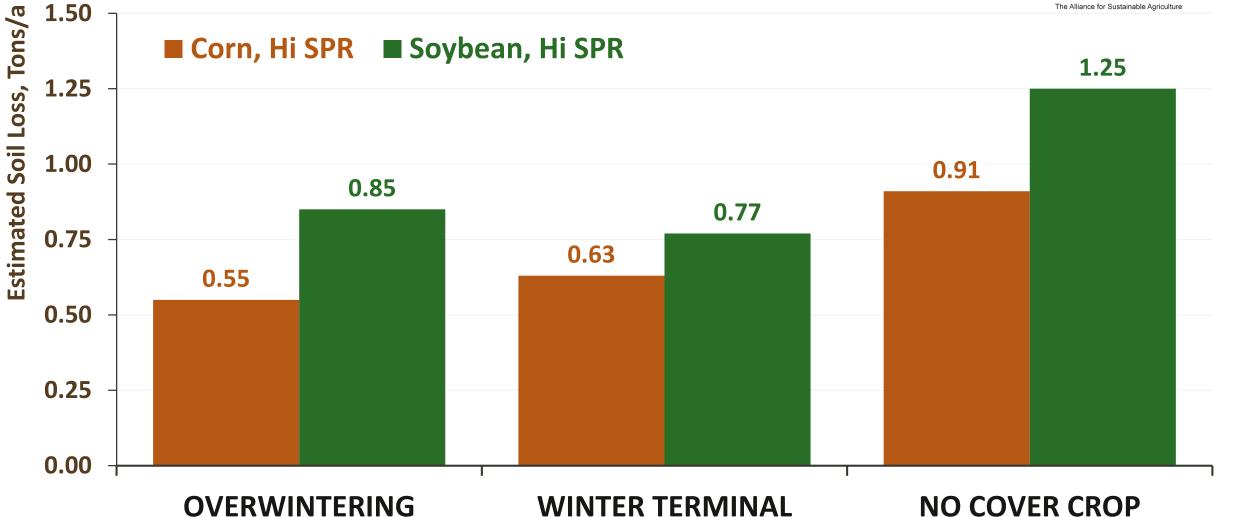

IILLINOIS

Cover Crops

- Cover crops are key to reducing nutrient losses and reducing greenhouse gas emissions
- Soybeans don't find a yield drag, particularly when control for tillage.
- Need to keep cover crop costs in line
- Expect policy innovations in this area
- Ecosystem service markets offers farmers opportunity to benefit from conservation practice

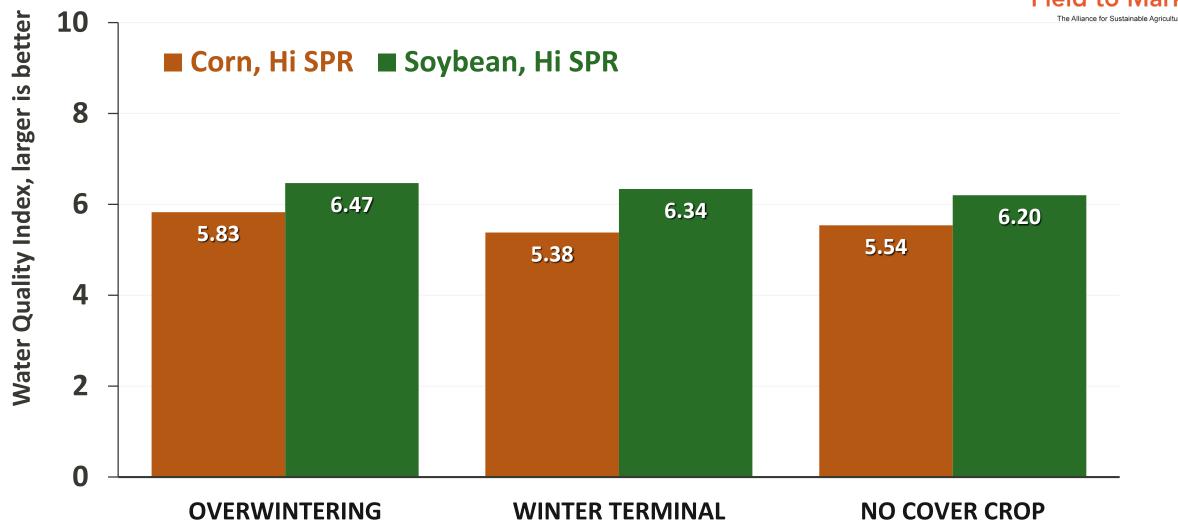
IILLINOIS

Tillage & Soil Erosion, Corn

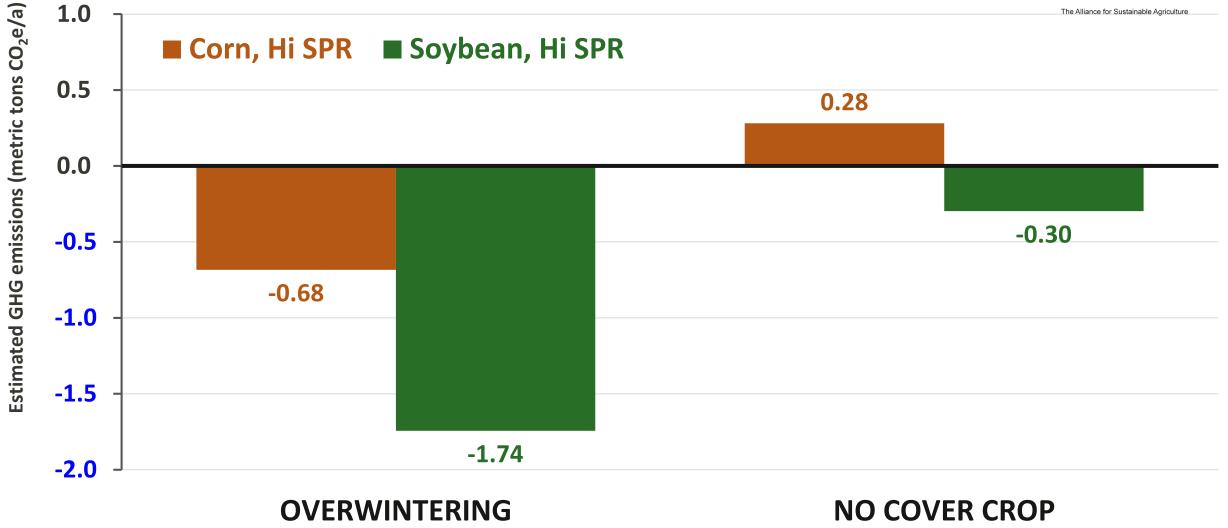


IILLINOIS

Cover Crops: Soil Loss



Cover Crops: Water Quality Index



Cover Crops: GHG Emissions

IILLINOIS

Summary

- 1. Appropriate tillage levels key to profitability, expect emphasis on lowering tillage to continue into future
- 2. Nitrogen applications at MRTNs result in highest profitability
- 3. Need to keep yields at higher levels no matter the system
- 4. Cover crops have potential for returns in the future leading to need to experiment

Precision Conservation Management

ILLINOIS Agricultural & Consumer Economics

COLLEGE OF AGRICULTURAL, CONSUMER & ENVIRONMENTAL SCIENCES

Thank You for joining us! Please submit your questions

Visit us at farmdocDAILY .Illinois.edu

☑ Subscribe for Latest News Updates

HECKOFF & MEMBERSHIP Programs

Agricultural & Consumer Economics

COLLEGE OF AGRICULTURAL, CONSUMER & ENVIRONMENTAL SCIENCES

Precision Conservation Management

For the webinar archives and 5-minute farmdoc Subscribe to our channel YouTube.com/farmdocVideo

